10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Natural Gas GHG Emission Factors

Diesel GHG Emission Factors

CO ₂ =	52.78	kg/MMBtu =	116.36	lb/MMBtu	CO ₂ =	10.15	kg/gal =	22.38	lb/gal
CH ₄ =	0.0059	kg/MMBtu =	0.013	lb/MMBtu	CH ₄ =	0.0003	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	$N_2O =$	0.0001	kg/gal =	0.0002	lb/gal

CO₂, CH₄, and N₂O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 2.2 (March 2007)

HRSG Stack - Burning Natural Gas

TINGO GLACK	Till OC Clack Burning Natara Cas										
Operating Ho	urs	2628	hr/yr								
HRSG Heat I	HRSG Heat Input 1,998		MMBtu/hr								
				_							
$CO_2 =$	277,210	tonne/yr									
$CH_4 =$	31	tonne/yr =	651	tonne CO ₂ e/yr							
$N_2O =$	0.53	tonne/yr =	163	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	278,023					

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 2628 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas, which corresponds to winter minimum (20 F).

HRSG Stack - Burning Hydrogen-Rich Fuel

Operating Hours 5,694			hr/yr		Syngas GHG Emission Factors			
HRSG Heat Input		2,432	MMBtu/hr		CO ₂ =	28.1	lb/MMBtu	
				•				
CO ₂ =	176,445	tonne/yr			Total to	nne CO ₂ e/yr =	176,445	

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 2628 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing Hydrogen-rich Fuel, which corresponds to winter minimum (20 F).

Attachment DR1-41.xls 1 of 6

10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Auxiliary Boiler

Operating Hours 2,190		hr/yr				
HRSG Heat Input		142	MMBtu/hr			
				-		
CO ₂ =	16,418	tonne/yr				
CH ₄ =	2	tonne/yr =	39	tonne CO ₂ e/yr		
$N_2O =$	0.03	tonne/yr =	10	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	16,466

Emergency Generators

Operating Hours		50	hr/yr			
HRSG Heat Input		2,800	Bhp			
$CO_2 =$	3,201	lb/hr =	73	tonne CO ₂ /yr		
CH ₄ =	0.09	lb/hr =	0.045	tonne CO ₂ e/yr		
$N_2O =$	0.03	lb/hr =	0.2218	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	146

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Fire Water Pump

Operating Hours		100	hr/yr			
HRSG Heat Input		556	Bhp			
$CO_2 =$	636	lb/hr =	29	tonne CO ₂ /yr		
CH ₄ =	0.02	lb/hr =	0.018	tonne CO ₂ e/yr		
$N_2O =$	0.01	lb/hr =	0.0881	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	29

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Attachment DR1-41.xls 2 of 6

^{*} Total tonnes CO₂e per year represent the contributions from both generators.

10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Gasification Flare

Pilot Operati	on			_		
Operating Hours		8,760	hr/yr			
HRSG Heat I	nput	0.5	MMBtu/hr			
				_		
CO ₂ =	231	tonne/yr				
CH ₄ =	0.03	tonne/yr =	0.5	tonne CO ₂ e/yr		
$N_2O =$	0.0004	tonne/yr =	0.1	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	232
Flaring Even	ts			_		
Total Operation	on	115,500	MMBtu/yr			
		- -	-	-		
CO ₂ =	6,098	tonne/yr				
CH ₄ =	0.7	tonne/yr =	14	tonne CO ₂ e/yr		
$N_2O =$	0.01	tonne/yr =	4	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	6,116

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Attachment DR1-41.xls 3 of 6

10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

SRU Flare

011011010						
Pilot Operati	ion			_		
Operating Ho		8,760	hr/yr			
HRSG Heat I	nput	0.3	MMBtu/hr			
	•	•	1			
CO ₂ =	139	tonne/yr				
$CH_4 =$	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
Flaring Even	ıts (assist gas	3)				
Operating Ho		6	hr/yr	7		
HRSG Heat I		36	MMBtu/hr			
			•	_		
$CO_2 =$	11	tonne/yr				
CH ₄ =	0.001	tonne/yr =	0.03	tonne CO ₂ e/yr		
$N_2O =$	0.00002	tonne/yr =	0.007	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	11
Throughput	(inerts)					
$H_2S =$	•	25	%			
CO ₂ (inerts) =	=	75	%			
$H_2S =$		72	lbmol/hr			
CO ₂ (inerts) =	=	216	lbmol/hr			
CO ₂ (inerts) =		9,488	lb/hr			
Operating Ho	urs	6	hr/yr			
				Í	Total tonne CO ₂ e/vr =	26
					Total tonne CO ₂ e/yr =	26

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Attachment DR1-41.xls 4 of 6

Throughtput (inerts) amount calculated from the relationship of CO2 to H2S in the SRU Flare.

10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Rectisol Flare

Pilot Operat	tion					
Operating Hours		8,760	hr/yr			
HRSG Heat	Input	0.3	MMBtu/hr			
				-		
CO ₂ =	139	tonne/yr				
CH ₄ =	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
		•		•		

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal En	nissions				
Operating Hours		8,760	hr/yr			
HRSG Heat I	nput	10	MMBtu/hr]		
	ı	1	1			
CO ₂ =	4,625	tonne/yr				
CH ₄ =	0.52	tonne/yr =	10.9	tonne CO ₂ e/yr		
$N_2O =$	0.0088	tonne/yr =	2.7	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	4,638
SRU Startup	Waste Gas D	isposal		_		
Operating Ho	urs	300	hr/yr			
HRSG Heat I	nput	10	MMBtu/hr			
			_	_		
CO ₂ =	158	tonne/yr				
CH ₄ =	0.018	tonne/yr =	0.37	tonne CO ₂ e/yr		
$N_2O =$	0.00030	tonne/yr =	0.093	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	159

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Attachment DR1-41.xls 5 of 6

GHG Emissions Summary by Source

Emissions Summary

Hydrogen Energy California (HECA)

10/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Intermittent CO₂ Vent

Operating Hours	504	hr/yr
CO ₂ Emission Rate	656,000	lb/hr
	•	

Assumes 21 days per year venting at full rate.

Gasifier Warming

Operating H	ours	1,800	hr/yr			
HRSG Heat	Input	18	MMBtu/hr	1		
			_	_		
$CO_2 =$	1,711	tonne/yr				
CH ₄ =	0	tonne/yr =	4	tonne CO ₂ e/yr		
$N_2O =$	0.00	tonne/yr =	1	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	1,716

Total tonne CO ₂ e/yr =	634,296

Attachment DR1-41.xls 6 of 6